

3rd Tunnel Asset Owners Day – Sustainability Day

START AT 13.15h

Introduction

13h10 – 13h20
Introduction by Johan Mignon (president ABTUS-BVOTS)
&

by Wouter Casteels (Algemeen manager De Werkvennootschap (host))

Session 1

Kris Van Boven

Filip Slagmulder

Joos Dewulf

Amélie Callejon

Vincent Thibert (excused)

Erwin Joris (excused)

Didier Delincé

Mathieu Cleremans (excused)

Didier Van De Velde (excused)

13h20 - 14h20 Session 1 - Plenary session & debate

chair: Bart De Pauw & Joseph Ickmans

Overview

- Tunnelplan Vlaanderen
- Projecten 2025
- VTR

Tunnelplan Vlaanderen

Tunnelplan Vlaanderen

Scope

- Tunnels in Flanders;
- > 250 m in length;
- Managed by AWV or temporarily managed by third parties;
- With centralized monitoring, operation, and control.

Doelstellingen

- Bringing the safety and reliability of all tunnels in Flanders up to standard within a ten-year timeframe.
- Implementing professional asset management in accordance with ISO 55001.

Optimal balance

- Improving safety for users;
- Ensuring continuity within the network (mobility);
- Guaranteeing the availability of tunnels and reducing the risks of failure

Tunnelplan Vlaanderen

Totaalrenovaties

#	Tunnel	Basisscenario	Alternati
1	Beverentunnel (R2)	2023-2024	
2	Vierarmentunnel (R0)	2030-2031	2025
3	Rupeltunnel (A12)	2025-2026	2026-202
4	Jan De Vos tunnel (A12)	2029-2030	2027-202
5	Craeybeckx (E19)	2028-2029	2028-202
6	Waaslandtunnel	2031-2032	2030-203
7	Bevrijdingstunnel (A12)	2031	2032
8	Tijsmanstunnel (R2)	2027-2028	2030-203
9	Kennedytunnel (R1)	2032-2033	2032-203
10	Zelzatetunnel (E34)	2032-2033	2033

Projects

Projects

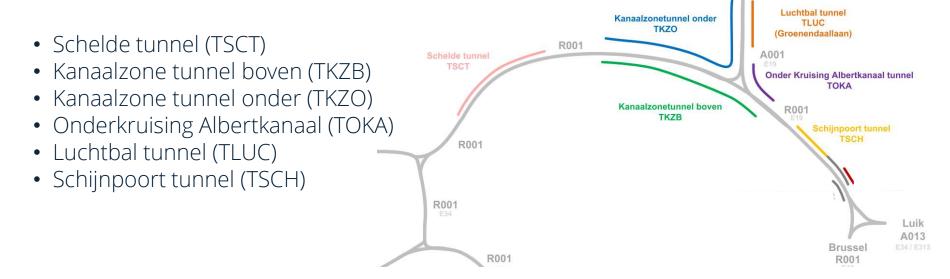
- 2025
 - o in preparation:
 - VIE renovation (tender)
 - RUP renovation (design)
 - JDV extension & renovation (design)
 - WAA, renewal of tunnel ventilation
 - TYS and ZEL, tunnel lighting
 - Various tunnels, high voltage, low voltage, emergency power systems
 - new AID system in various tunnels
 - o in progress:
 - CRA, tunnel lighting, tunnel ventilation, high voltage, low voltage
 - RUP, tunnel lighting
 - LEO, renovation
 - BEV, renovation
 - Small interventions regarding tunnel safety in various tunnels.

VLaamse Tunnelrichtlijn (VTR)

Vlaamse Tunnelrichtlijn (VTR)

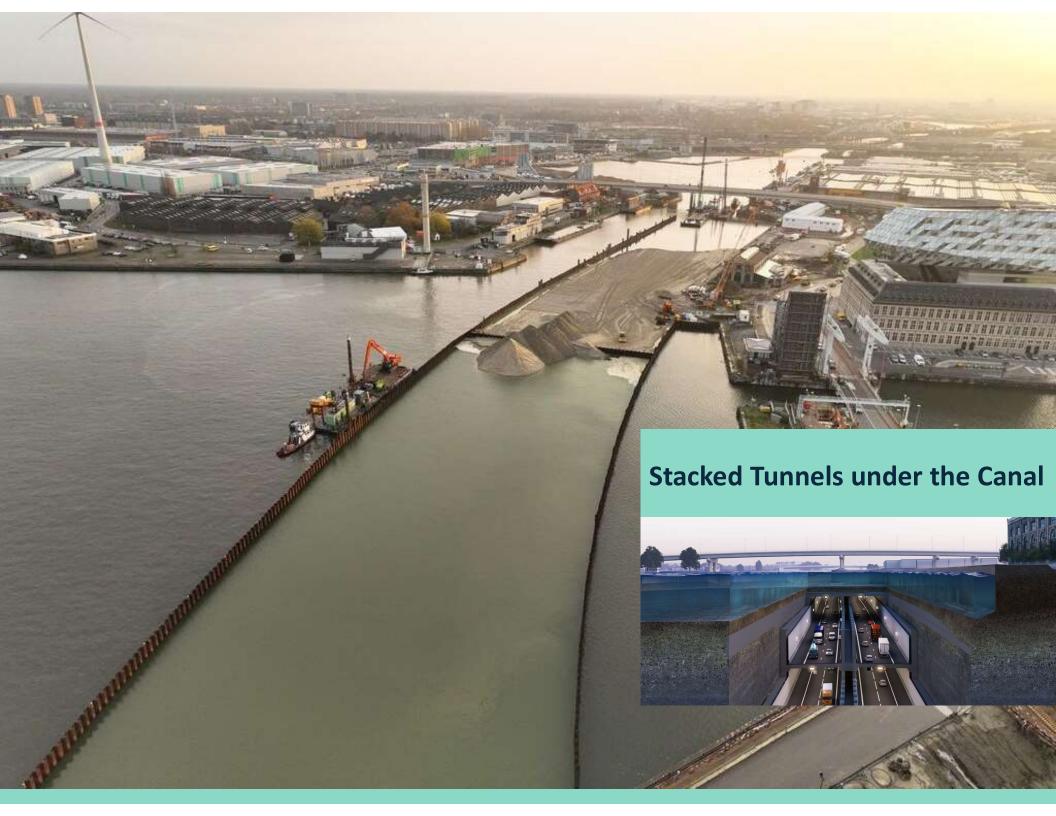
- Chapters published:
 - overzicht VTR
- Chapters coming (spring 2025):
 - o classification en standard equipment
 - Classification, ADR Tunnel Categorization, and Criticality
 - Standard Equipment Packages
 - o C200 Lighting
 - C500 Firefighting Equipment
 - o C400 Traffic management
 - o C600 Communication
 - Education, Training and Practice

^{*}These timings are target objectives and purely indicative



World Tunnel Day & 3rd Asset Owners day

Brussels - 06/12/2024


Lantis will be future owner of 6 tunnels as part of the Oosterweellink project

Six tunnels with a total lenght of approx. 10km, in total 25km of tubes.

Liefkenshoektunnel is operated by nv Tunnel Liefkenshoek, a subsidiary of Lantis.

Oosterweel-Scheldetunnel

Extra Scheldt crossing capacity

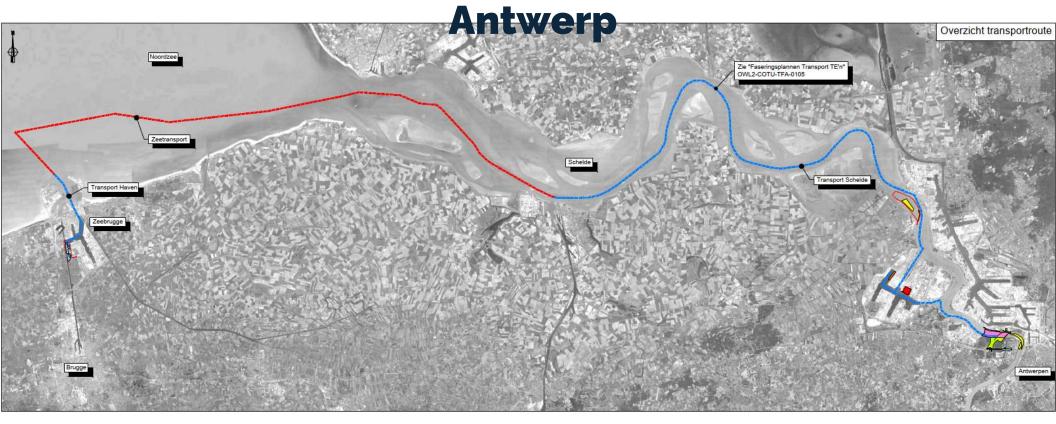
2x3 Lanes

Length: 1,8 km

Immersed tunnel elements (8)

Elements built in Zeebrugge

Six meter wide bike tube

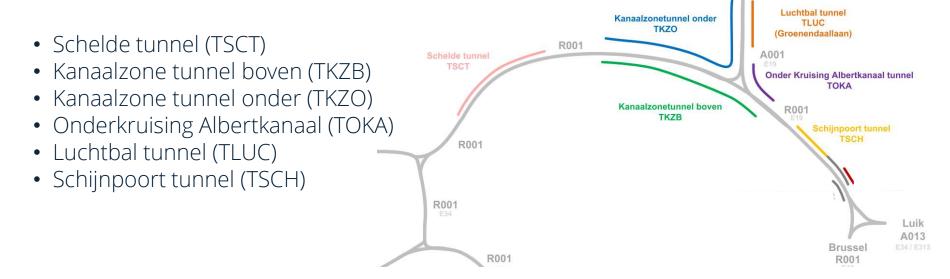


202<u>5</u> Transport of the 8 tunnelelements to

Biggest challenges and opportunities towards a future role as tunnel operator

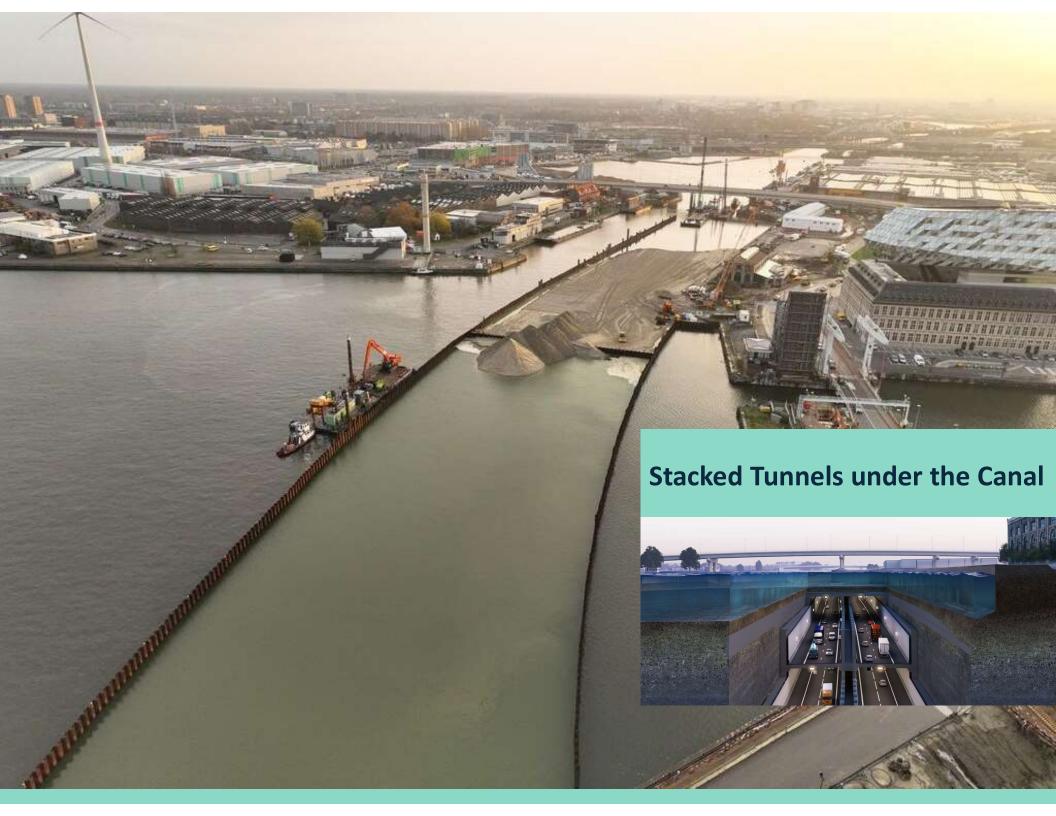
- Designing and implementing a future-proof tunnel system architecture involves the functioning of a "smart" operate and control framework, ensuring seamless connectivity within its broader environment. This forward-looking approach emphasizes adaptability and scalability, aligning with evolving technological landscapes.
- The pursuit of predictability in asset management is further augmented by the strategic application of new technologies. Proactive (preferably 'online') inspections and targeted maintenance interventions, contribute to high availability and minimize unforeseen technical disturbances.

 The ultimate target is to reduce downtime and enhance overall system reliability.
- By embracing emerging technologies and data-driven strategies, we pave the way for a future-proof asset management system that is resilient and adaptive to the demands of tomorrow.
- The technology of the future is expected to function as co-pilot in various aspects of operation and life cycle management. It will provide support, guidance and enhanced capabilities to the end-user.



World Tunnel Day & 3rd Asset Owners day

Brussels - 06/12/2024


Lantis will be future owner of 6 tunnels as part of the Oosterweellink project

Six tunnels with a total lenght of approx. 10km, in total 25km of tubes.

Liefkenshoektunnel is operated by nv Tunnel Liefkenshoek, a subsidiary of Lantis.

Oosterweel-Scheldetunnel

Extra Scheldt crossing capacity

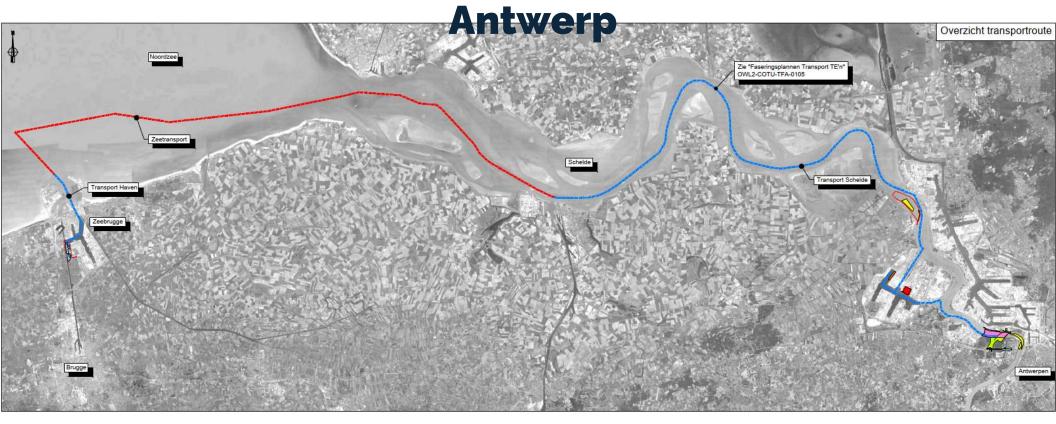
2x3 Lanes

Length: 1,8 km

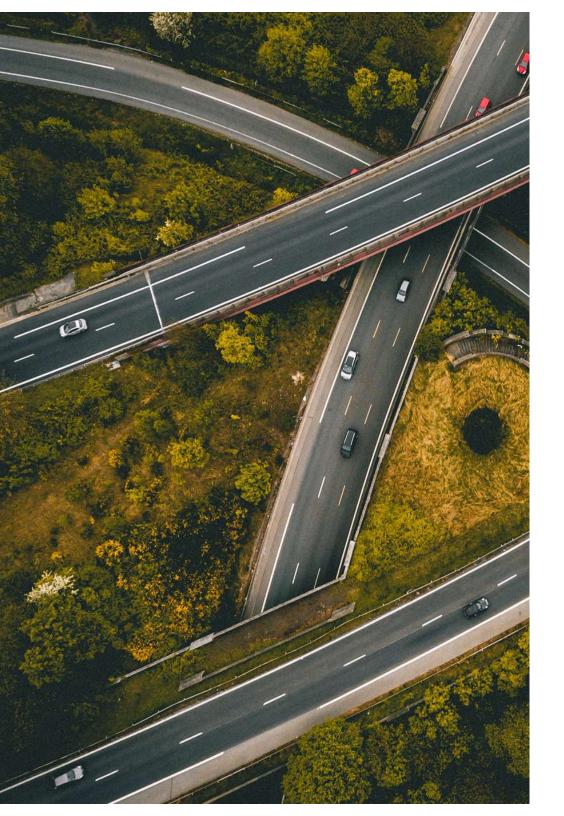
Immersed tunnel elements (8)

Elements built in Zeebrugge

Six meter wide bike tube



202<u>5</u> Transport of the 8 tunnelelements to

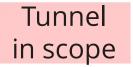


Biggest challenges and opportunities towards a future role as tunnel operator

- Designing and implementing a future-proof tunnel system architecture involves the functioning of a "smart" operate and control framework, ensuring seamless connectivity within its broader environment. This forward-looking approach emphasizes adaptability and scalability, aligning with evolving technological landscapes.
- The pursuit of predictability in asset management is further augmented by the strategic application of new technologies. Proactive (preferably 'online') inspections and targeted maintenance interventions, contribute to high availability and minimize unforeseen technical disturbances.

 The ultimate target is to reduce downtime and enhance overall system reliability.
- By embracing emerging technologies and data-driven strategies, we pave the way for a future-proof asset management system that is resilient and adaptive to the demands of tomorrow.
- The technology of the future is expected to function as co-pilot in various aspects of operation and life cycle management. It will provide support, guidance and enhanced capabilities to the end-user.

De Werkvennootschap

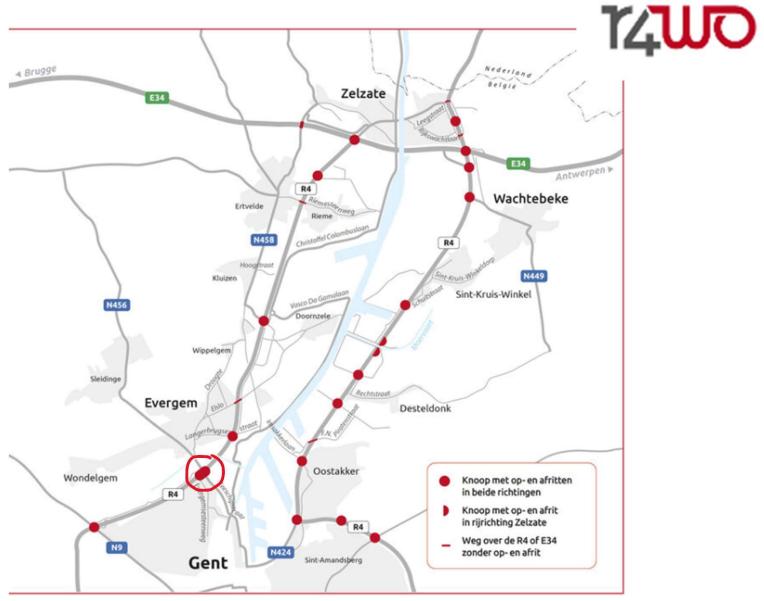

World Tunnel Day ABTUS-

BVOTS - Tunnel Asset

Owners Day

December 6st 2024

Overview of current projects

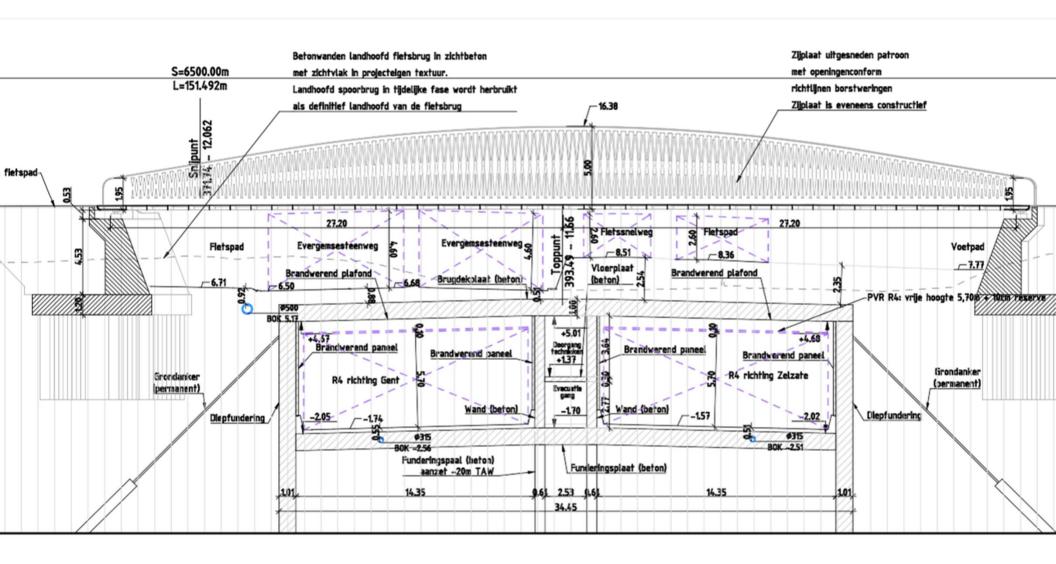


Overview tunnels in our scope

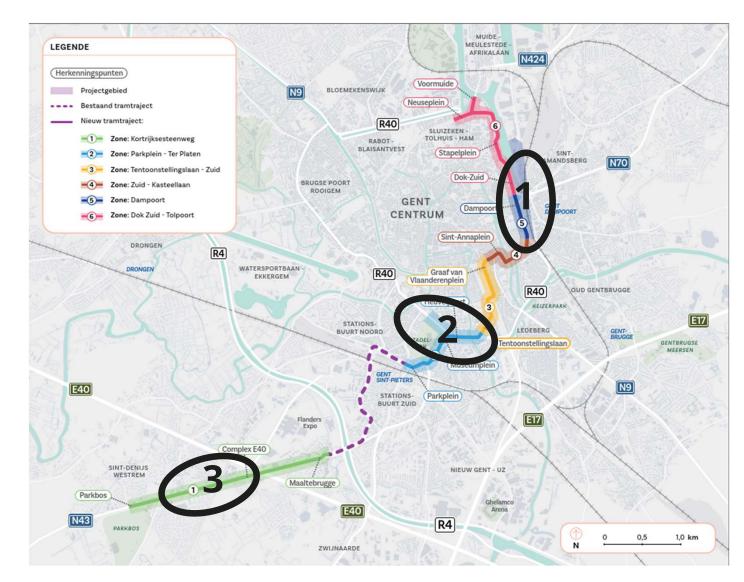
Disclaimer – planning/date

All schedules are subject to political decision-making & obtaining building permits

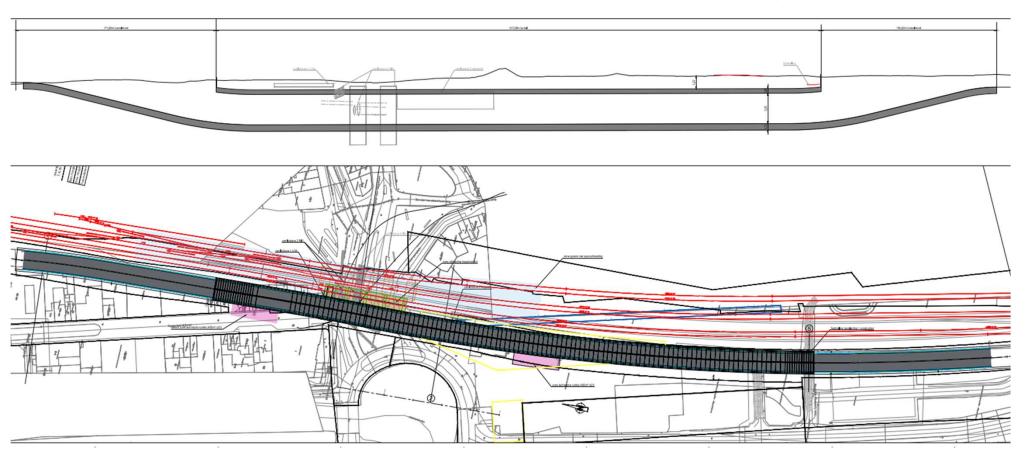
estimation of total contract value of the project, VAT excluded - 750mio €


Tunnel R4 - Ghent

Facts	R4 Ghent
Design phase	Execution Design
Length	330m
Lanes	2x (2 lanes + emergency lane)
ADR	Α
Construction method	C&C
Start tender	accomplished
Ventilation	yes
Max. traffic heigth	5,7m
Start construction	1/8/2025
Evacuation strategy	Central tunnel

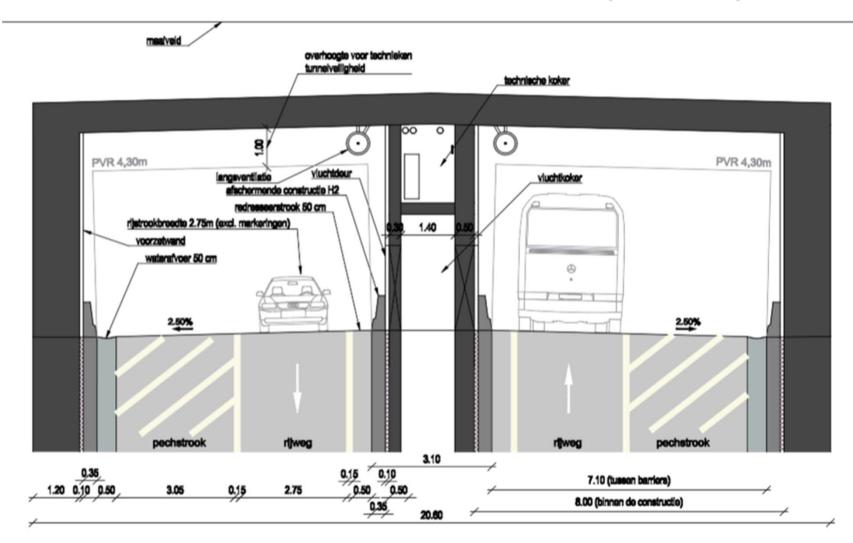


- Dampoort (>500m partially STROSS – city traffic lane 2x1)
- Heuvelpoort (DODO partially STROSS – city traffic lane 2x1)
- 3. Kortrijksesteenweg (modification existing bypass – expansion of bicycle tubes)

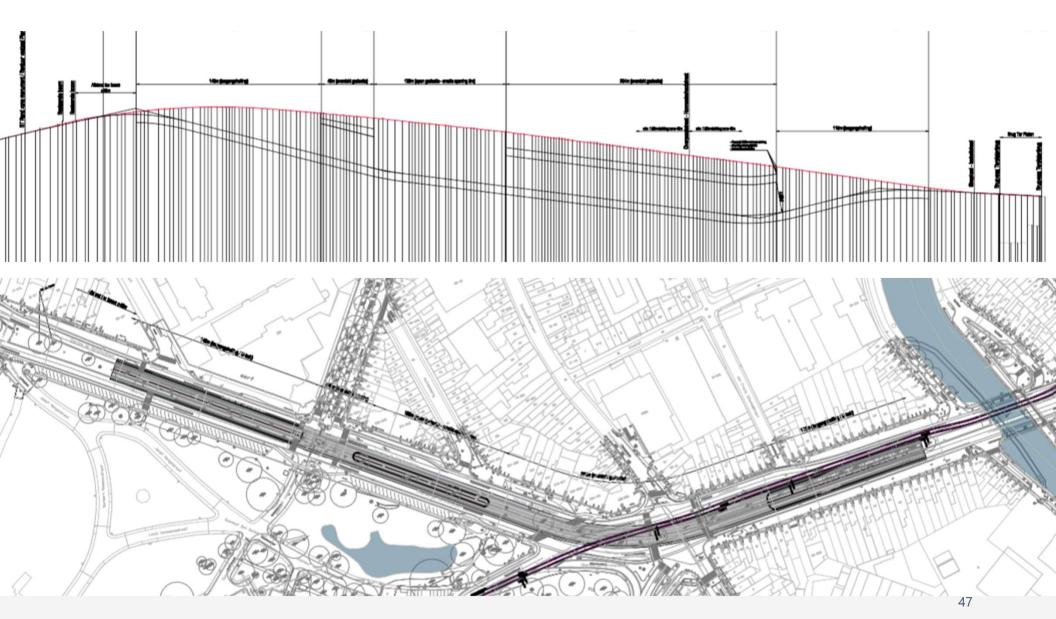

Tunnels Gentspoort - Ghent

Facts	Dampoort
Design phase	Preliminary draft
Length	515 m
Lanes	2x (1 lane + emergency lane)
ADR	1
Construction method	C&C – partialy stross
Start tender	2026 (selection 2025)
Ventilation	yes
Max. traffic heigth	4,3 m
Start construction	(2028)
Evacuation strategy	Central tunnel

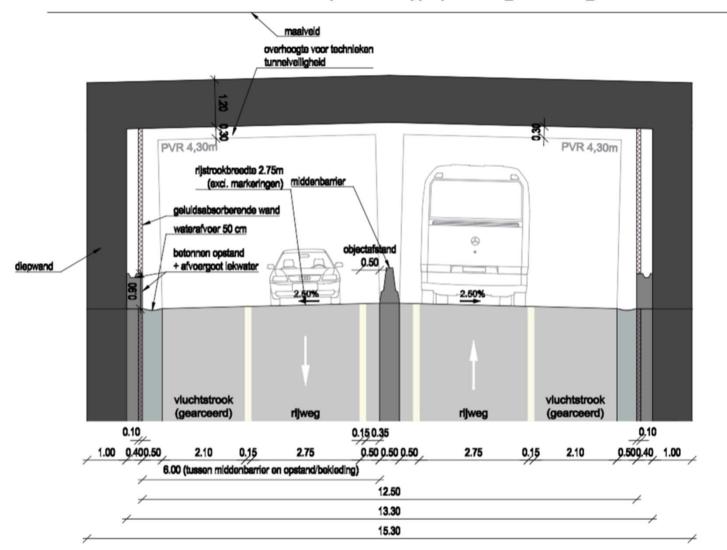
Facts	Heuvelpoort – DODO – no real tunnel
Design phase	Preliminary draft
Length	205 m (+ 100 m) + 40 m
Lanes	2x1 lane + emergency lanes
ADR	1
Construction method	C&C – partialy stross
Start tender	2026 (selection 2025)
Ventilation	no
Max. traffic heigth	4,3 m
Start construction	(2028)
Evacuation strategy	1



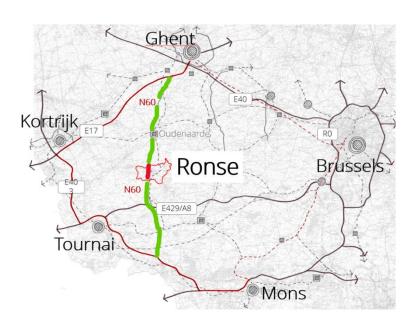
Tunnel Dampoort – Lengteprofiel en grondplan

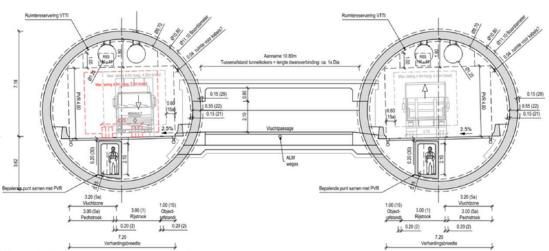


Tunnel Dampoort – Dwarsprofiel

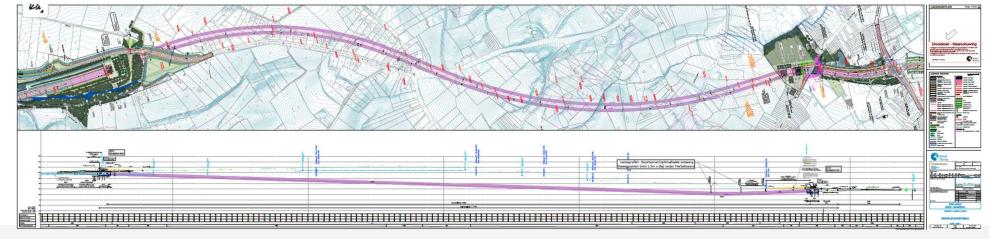


DOD Heuvelpoort – lengteprofiel en grondplan





DOD Heuvelpoort – typeprofiel gesloten gedeelte



Figuur 17 - Typedwarsprofiel boortunnels

Tunnel Ronse

Facts	
Design phase	Reference design
Length	2700m
Lanes	2x (1 lane + 1 emergency lane)
ADR	С
Construction method	ТВМ
Start tender	Summer 2025
Ventilation	yes
Max. traffic heigth	4,7m
Start construction	Mid 2027
Evacuation strategy	Intersection – 250m

• Rond Ronse - 2,5km - bored tunnel - 2 tubes - cross section each 250m

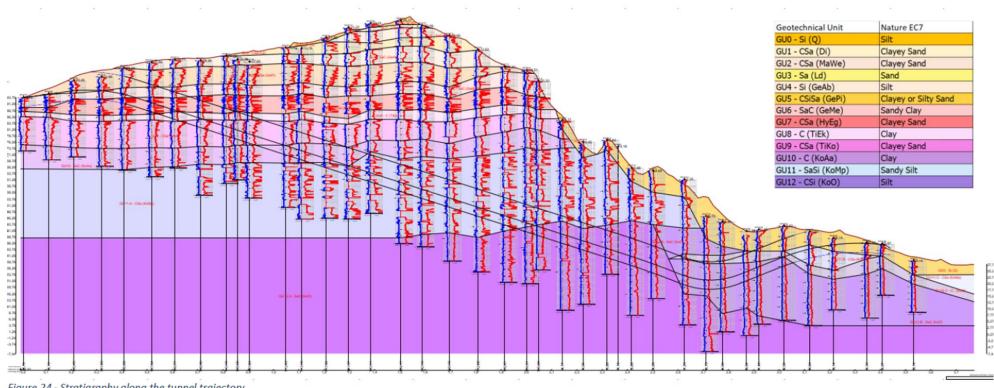
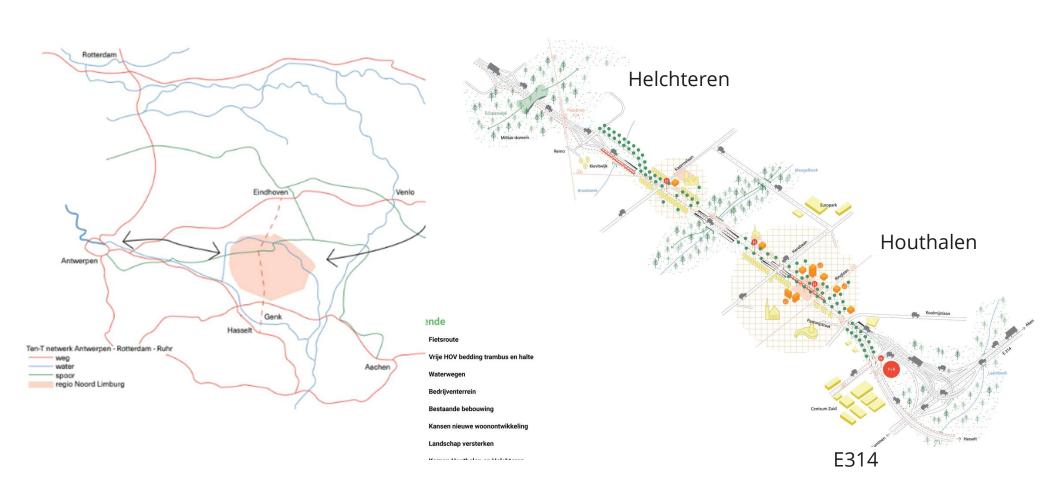
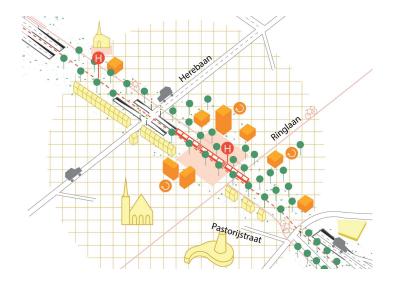



Figure 24 - Stratigraphy along the tunnel trajectory

VT607

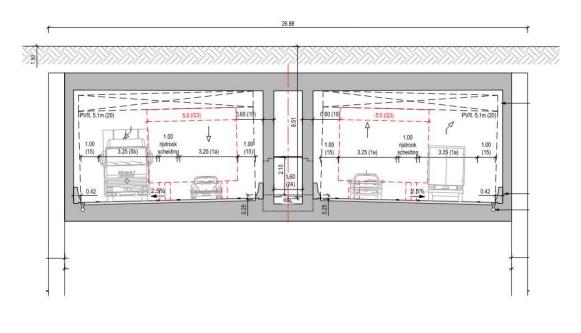
Noord zuid Limburg – North - South Limburg

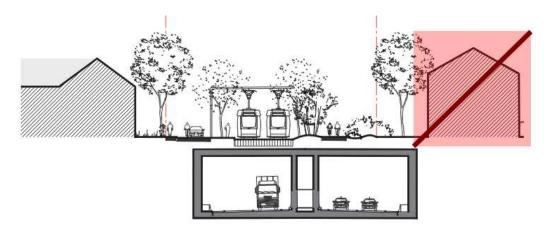

Tunnels North South of Limburg

Facts	Houthalen
Design phase	Building permit
Length	2000m
Lanes	4x (2 lanes in each direction)
ADR	Α
Construction method	C&C
Start tender	Spring 2025
Ventilation	yes
Max. traffic heigth	5,1m
Start construction	2027
Evacuation strategy	Central escape route

Facts	Helchteren
Design phase	Building Permit
Length	1800m
Lanes	2x (1 lanes + emergency lane)
ADR	Α
Construction method	C&C
Start tender	Spring 2025
Ventilation	yes
Max. traffic heigth	5,1m
Start construction	2027
Evacuation strategy	Central escape route

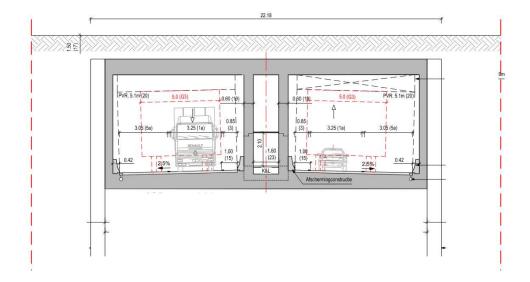
Segment Houthalen


- 2 x 2 splitted lanes in tunnel
- 2000m



Segment Houthalen

KW501 Zuid


Visualisatie

Segment Helchteren

- 2x1 lanes + emergency lane
- 1800m

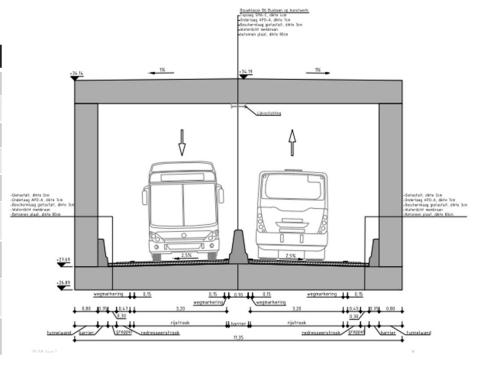
KW103 Ter Dolen

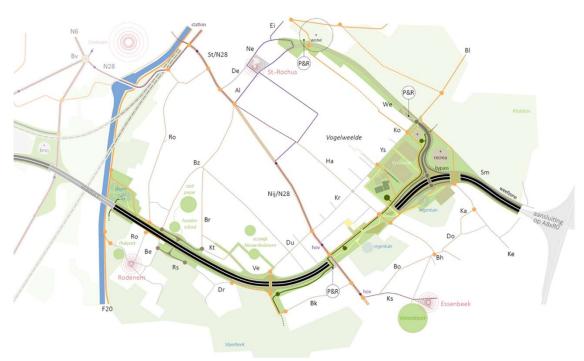
VISUALISATIES

Segment Helchteren

Execution in 2 phases

Fase 1 =>


Functionele Dwarsprofiel FDP Fase 1


Werken aan de Ring: tunnel Ringtrambus

Facts	RTB
Design phase	Reference design
Length	273m
Lanes	2x 1 lanes
ADR	-
Construction method	C&C
Start tender	accomplished
Ventilation	no
Construction	2025-2026
Max. traffic heigth	6,3m

A8-Halle.be Werken aan de Ring – A8 in Halle

Facts	A8 Halle
Design phase	Execution Design
Length	540m
Lanes	2x (2 lanes + emergency lane)
ADR	Α
Construction method	C&C
Start tender	accomplished
Ventilation	yes
Max. traffic heigth	5,7m
Start construction	2029
Evacuation strategy	Central tunnel

Complex Project Viaduct Gentbrugge

Alternatives research, with several scenarios with tunnels, going from short bypasses and cut-and-cover-tunnels to long bored tunnels (>10km)

Execution: > 2030

Walloon tunnels upgrading

3nd World Tunnel Day ABTUS-BVOTS

ing. Amélie Callejon

Contents

- 1. Tunnel plan
- 2. Future work: $2025 \rightarrow 2026$

1. Tunnel plan (→ 2026)

Initial budget (2019):

- Major communication networks : 95.000.000 € HTVA
- Minor communication networks: 7.000.000 € HTVA

Budget after floods (2021):

All the communication networks: 140.000.000 € HTVA

1. Tunnel plan (→ 2026)

2nd tunnel plan will follow the current plan (2026 <)

Objective: by 2039 all the Walloon tunnels upgraded

2. Future work 2025 → 2026

- Flémalle (Liège): rehabilitation ELM + asbestos removal + passive protection
- Hocheporte (Liège): rehabilitation ELM + passive protection
- Sainte-Marie / Louvrex (Liège): rehabilitation ELM + passive protection
- Astrid (Mouscron): rehabilitation ELM + concrete renovation + passive protection + fire divions of plant room

2. Future work 2025 → 2026

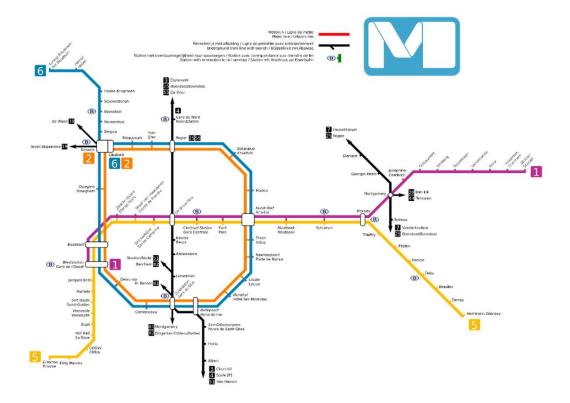
- Mayence (Charleroi): rehabilitation ELM + concrete renovation + passive protection + fire divions of plant room
- Hiernaux (Charleroi): tunnel upgrade according to priorities
- Hublinbu (Charleroi): tunnel upgrade according to priorities
- Armée-Française (Charleroi): tunnel upgrade according priorities

Thanks for your attention

SERVICE PUBLIC RÉGIONAL DE BRUXELLES GEWESTELIJKE OVERHEIDSDIENST BRUSSEL

METRO AND PRE-METRO OF BRUSSELS ASSET MANAGEMENT (UIAM)

Speakers: Didier Delincé, Denis Franquin


Contributors: Dimitri Kinnard, Eric Descamps, Jean-Philippe Pollak, Fabian Nisen...

Asset Management within UIAM: the team in the organization

Asset Management within UIAM : Scope : Metro and underground infrastructure

Tunnels: ~40 km

Stations: 69

Maintenance yard : Delta

(metro/bus)

Estimated value : ~10.000.000.000 €

Owner: SPRB-GOB

Operator: STIB-MIVB

Asset Management: main activities

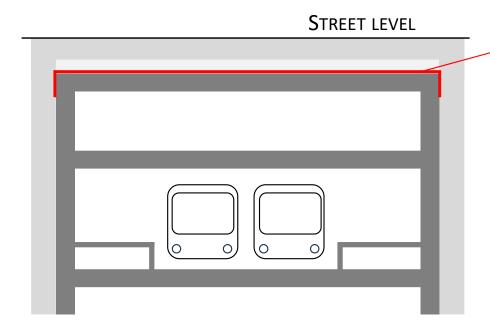
- Inventories with state assessment / Inspections
- PACSI's (sharing of responsabilities)
- Handover lists
- Technical referentials (Technical prescriptions)
- Management of plans and technical documentation

With limited financial & human ressources...

Asset Management's and maintenance costs: overview

Overall budget (SSE/SSD + DITP/DIOV, 2022): ~172 millions EUR / year

- No(o)rd-Albert program (PNA, M3): ~55 M€ / year
- Modernisation L1-5 (PMM): ~13,5 M€ / year
- Escalators : ~9 M€ / year
- Improvement surface network (ARS): 7 ~M€ / year
- Maintenance Civil Engineering: 5 ~M€ / year
- Equipments renewal : ~45 M€ / year
- Improvement infrastructure projects: ~30 M€ / year
- Varia : ~7,5 M€ / year



Asset Management: a few challenges...

- Watertightness of ceilings of metro stations and tunnels, with dependance on roads works above
- Ageing of concrete on « critical » works (with access limits and limitations of disturbance of trafic/transport)
- Fire safety in underground works, in particular with public access

Recent concern: assessment and renovation of watertightness layer above ceilings of tunnels and stations

Watertightness layer:

(butyl screed + bituminous glue ?) lifetime duration

- theoretical: 20-30 years?

- practical: 15-20 years?

Surface estimation: 64 ha (0,64 km²)

Position of groundwater level!

Budget!

Coordination efforts !!!

Ongoing projects (civil works): overview

- Project metro 3 No(o)rd-Albert: Albert (STIB-MIVB / Louis De Waele / in Advance)
- Project metro 3 No(o)rd-Albert: Tunnel Constitution / Grondwettunnel (STIB-MIVB / Jan de Nul / Besix / Franki)
- Central station (Gare Centrale / Centralstation)
 (STIB-MIVB / Willemen / Franki)
- Project metro 3 No(o)rd-Bordet: with tunnel boring machine (Beliris / ...)

Thank you for your attention!

Session 1

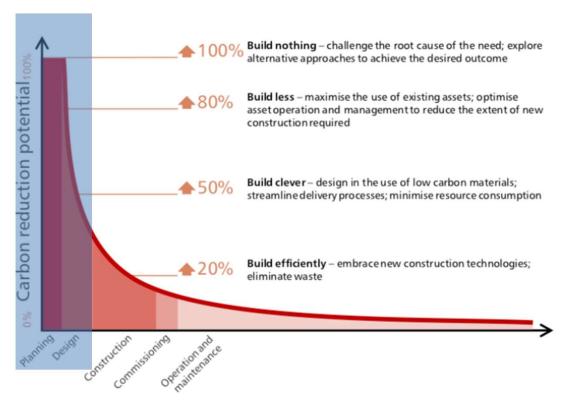
Conclusions: questions & debate

- 1. CO2 Emissions: What specific strategies are in place to minimize CO2 emissions during tunnel construction and operation?
- 2. Resilience: How is your organization adapting tunnel infrastructure to withstand extreme weather events and climate change impacts?
- 3. Investment: Are you willing to allocate additional funds to sustainable initiatives, such as renewable energy integration and green building practices?

Walloon tunnels upgrading

3nd World Tunnel Day ABTUS-BVOTS

ing. Amélie Callejon


CO2 Emissions: What specific strategies are in place to minimize CO2 emissions during tunnel construction and operation?

Planning

- Tacle carbon early project definition EIA study trade off alternatives
- Considering whole life
- Integral & multidisciplinary design avoiding "single-use solutions" combining ecological & social benefits

Source: Green Construction Board

CO2 Emissions: What specific strategies are in place to minimize CO2 emissions during tunnel construction and operation?

- Construction:
 - Project EIA assessment
 - Case-by-case additional requirement in contract regarding NOX-emission and impact on Nature2000-habitat (electrical equipment)
 - "CO2-prestatieladder level 5"-requirement in DBFM-contracts
 - Sustainability-goals in tender
 - Requirements
 - (PV panel, CO2-neutral service buildings)
 - Re-use material onsite;
 - Transport over water & railways;
 - •
 - Awarding criteria.

Resilience: How is your organization adapting tunnel infrastructure to withstand extreme weather events and climate change impacts?

- Buffercapacity rain water
 - T100-scenario

Investment: Are you willing to allocate additional funds to sustainable initiatives, such as renewable energy integration and green building practices?

- Yes → if proven technology
- Innovation & new technology → dialogue phase with contractors to discuss before importing in contract
 - Monitoring is an issue

CO2 Emissions: What specific strategies are in place to minimize CO2 emissions during tunnel construction and operation?

From 2026, we will insert additional criteria in our public contracts for encourage companies to reduce their CO2 emissions.

Presently, SPW analyse how he might add value to the offer which have the lowest CO2 emissions.

Resilience: How is your organization adapting tunnel infrastructure to withstand extreme weather events and climate change impacts?

Before starting a tunnel renovation, we make a flood risk analysis.

If the risk exists, we try to find economic adjustments that minimize the risk.

Investment: Are you willing to allocate additional funds to sustainable initiatives, such as renewable energy integration and green building practices?

We are used to working by public contracts based on several criteria.

So, the low CO2 emissions criteria encourage these green initiatives.

ABTUS/BVOTS

activities / avantages

Journal T&ES (via AFTES)

Abtus/bvots is represented via Didier de Bruyn (correspondente in editorial board)

Revue trimestrielle N°262 Quarterly magazine Octobre/Novembre/Décembre 2017

- 3 EDITORIAL
- VIE DE L'ASSOCIATION/AFTES EVENTS Vœux de nos présidents
- AFTES INFOS
- VIE DE L'ASSOCIATION/AFTES EVENTS
- 19 Congrès AFTES 2107 : morceaux choisis
- 25 Hammag
- 29 Prix scientifiques de l'ABTUS Didier De Bruyn
- 33 Les lauréats de la ³⁸m éardon des « Tunnelling Awards » de l'AITES
 The winners of the 3th edition of the ITA Tunnelling Awards
 Diane Lothe thaurice Guillaud
- 43 Sainte Barbe au Musée de la Mine de Saint-Etienne Florent Robert
- 47 ETUDES PROJETS INNOVATIONS STUDIES – PROJECTS - INNOVATIONS

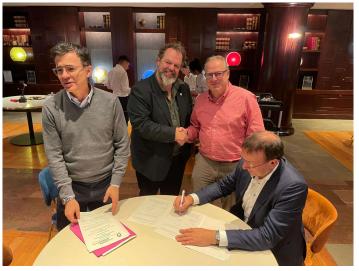
Risques et opportunités liés aux stockages souterrains d'énergie en France Risks and opportunities related to underground energy storage in France P. Gombert, M. Ghoreychi, F.Lahaie, R. Salmon, A. Thoraval

- DOSSIER SPECIAL HYPERBARIE SPECIAL FILE HYPERBARIC TECHNOLOGY
- 65 Interventions hyperbares en tunnelier: quelques retours d'experience Diving work in tunnelling machines: some experience feedback
- 73 Description des activités professionnelles et de l'accidentologie spécifique des interventions hyperbares en tunneller Description of professional activities and specific accidentology of hyperbaric
- tunnelling operations
 Organisation et sécurisation des travaux en milieu hyperbare sur le tunneller de
- Nice
 Organisation and safety of work in a hyperbaric environment on the Nice TBM
- 87 La formation des « tubistes »
 Diver training
- 91 Hyperbarie : le contexte réglementaire The hyperbaric regulatory context
- 95 Travaux en air comprimé histoire et évolution depuis 1987 Working in compressed air history and development since 1987
- CHANTIERS / WORKSITES
- 121 Métro de Naples Station Municipio : un projet integré archéologie/infrastructures qui ... suit l'histoire
 - The Naples Metro Municipio station: an integrated archeology and infrastructure project that... follows history Dott. Ing Antonio de Risi
- 128 CEVA, la nouvelle liaison ferroviaire entre la France et la Suisse Tunnel de Pinchat CEVA, the new rail link between France and Switzerland Pinchat Tunnel Eric Llardon et Thierry Schaller
- AGENDA

Las articles signite mengagant que la responsabilità de leur subsur. Tous les droits de reproduction, traduction, adeptition bisales ou particles sous quelques formes que ce soit, sont expressiment réservés.

Adobse are signed under the sale responsability of that authors. All reproduction translation and adapte lan of adobse (party or solely) are subject to copyright.

TUNNELS ET ESPACE SOUTERRAIN - Nº 262 - Octobre/Novembre/Décembre 2017



Session 1 ITA – ABTUS-BVOTS Contract signing 30th of November 2024 - Genova

Session 1 ITA – ABTUS-BVOTS Contract signing 30th of November 2024 - Genova

Thank you for your support!

Johan Mignon Bart De Pauw President of ABTUS-BVOTS Secretary of ABT

World Tunnel Congress 2027 – Antwerp (WTC 2027)

14:45 - 16:45 Session 2:

2 interactive sessions of 45 min. + plenary of 25 min.

First round

Theme	Papers	Room
Sustainability in Underground	 Opportunities of sustainable solutions in the underground structures of the 	Yellow room
Infrastructure	Oosterweel connection - Lantis (Robrecht Keersmaekers)	Host: Kang-Chi Ja
	The intersection of Sustainability and Fire	
	Safety in tunnels – Nestaan nv (Pieter van Nes)	
Sustainable	A sustainable material consideration for	Green room
Materials and	bicycle tunnels above groundwater level: in	Heat Dart Da Day
Construction Practices for	situ concrete vs galvanized corrugated steel plates – <i>SBE (Joshua Marysse)</i>	Host: Bart De Pau
Underground	 Efficient application of passive fire 	
Structures	protection in concrete tunnels – <i>Ghent</i>	
	University (Thomas Thienpont)	
Climate Change	Transformation of (tunnel) earthworks into	Plenary room
Adaptation and	Léém's unfired building materials – BC	
Resilience of	Materials (Ken De Cooman)	
Underground		
Infrastructure		

14:45 - 16:45 Session 2:

2 interactive sessions of 45 min. + plenary of 25 min.

First round

Theme	Papers	Room
Sustainability in Underground	 Opportunities of sustainable solutions in the underground structures of the 	Yellow room
Infrastructure	Oosterweel connection - Lantis (Robrecht Keersmaekers)	Host: Kang-Chi Ja
	The intersection of Sustainability and Fire	
	Safety in tunnels – Nestaan nv (Pieter van Nes)	
Sustainable	A sustainable material consideration for	Green room
Materials and	bicycle tunnels above groundwater level: in	Heat Dart Da Day
Construction Practices for	situ concrete vs galvanized corrugated steel plates – <i>SBE (Joshua Marysse)</i>	Host: Bart De Pau
Underground	 Efficient application of passive fire 	
Structures	protection in concrete tunnels – <i>Ghent</i>	
	University (Thomas Thienpont)	
Climate Change	Transformation of (tunnel) earthworks into	Plenary room
Adaptation and	Léém's unfired building materials – BC	
Resilience of	Materials (Ken De Cooman)	
Underground		
Infrastructure		

16:45 – 16.50 Conclusions and next steps

16:50 – 18.20 Network drink

Thank you for participation!

